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Abstract: This paper proposes an observer-based control strategy for networked multi-agent systems with time-
varying communication delays and random white noises under both fixed topology and Bernoulli switching topol-
ogy. First, a queuing mechanism is introduced and thus a team of agents can be modeled as a system with constant
delay. Then, using the system transformation method, the robust mean-square consensus problem of multi-agent
systems can be converted into the robust mean-square stability problem of an equivalent system, and some equiv-
alent conditions concerning the robust mean-square consensus of networked multi-agent systems are presented,
whose related observer-based stabilizability criteria can be established in the form of linear matrix inequalities
(LMIs). Furthermore, if the LMIs are feasible, the multi-agent systems achieve robust mean-square consensus if
and only if the directed graph has a directed spanning tree (fixed topology) or the union of graphs has a directed
spanning tree (Bernoulli switching topology). Finally, numerical simulations are given to illustrate the effective-
ness of the obtained theoretical results.
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1 Introduction
In recent years, distributed coordination of large num-
bers of autonomous individuals has attracted more and
more attention in a wide range including system con-
trol theory, applied mathematics, biology, communi-
cation, computer science and so on. This is partly due
to its challenging features and many applications, e.g.,
rescue mission, large object moving, troop hunting,
formation control and satellite clustering. One criti-
cal and fundamental issue in the distributed coordina-
tion of multi-agent systems is the consensus problem,
which generally means that as time goes, all agents
can asymptotically reach an agreement on their states
by designing a network protocol. Investigations of this
problem are of interest in both theory and engineer-
ing applications [1]. Up to now, by using different
analysis methods and tools including the graph theory
[2], the Lyapunov function method [3], the frequency-
domain analysis method [4], the matrix theory [5] and
so on, many consensus criteria have been obtained
for the systems under fixed topology [6-7], switching
topology [8] , and time delays [5-6,9,10-12]. See the
survey [13-14] and the references therein for more de-
tails.

In the past decade, consensus problem of multi-

agent systems has developed very fast and several re-
search topics have been addressed. But most of the
results on consensus in the existing literature are de-
veloped under the assumption that exact model of the
agent dynamics is known. However, there may exist
disturbances and uncertainties in practical engineer-
ing. Recently, robust mean-square consensus prob-
lem with random measurement noises has attracted
the attention of some researchers [15-20], which is
more complicated than normal consensus problem
when some noises are exerted on the interconnections
among autonomous mobile agents. [19] studied the
first-order consensus problem with least-mean-square
error. Assuming that the system state can be ob-
tained directly, [20] investigated the robust consensus
of second-order integrator with variable delays and
noises. It showed that the robust mean-square consen-
sus problem is solvable if and only if the union of the
topology set is connected. Compared with first-order
dynamics and second-order dynamics, there are still
lack of good results of general linear dynamics. For
general linear dynamical systems, [21] proposed an
observer-based control strategy for networked multi-
agent systems and studied the mean-square consensus
problem with constant communication delay, but ne-
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glected the noise problem. This motivates us to write
this paper.

In this paper, we focus on the robust mean-square
consensus problem of networked multi-agent systems
with time-varying communication delays and random
white noises in a sampling setting. The main contri-
butions of this paper are twofold: (i) compared with
[20], we adopt an observer-based consensus control
strategy as it is usually impossible to directly obtain
all states of systems in practice due to economic costs
or constraints on measurement, (ii) compared with
[21], we investigate the robust mean-square consensus
problem of general linear systems with time-varying
communication delays and random white noises.

The rest of this paper is organized as follows. In
Section 2, we introduce some graph knowledge, for-
mulate our problems and give some useful lemmas as
the preliminaries of our paper. Our main results are
given in Section 3. Simulations are given in Section 4
to illustrate the effectiveness of the obtained theoreti-
cal results. In Section 5, we give our conclusions.

1.1 Notations

We use standard notations throughout this paper. Let
Rn×n be the set of n×n real matrix, MT be the trans-
pose of the matrix M . M > 0 (M < 0) means
that matrix M is positive definite (negative definite).
Rn is the set of n-dimensional Euclidean space. In
represents the identity matrix of dimension n, and I
denotes the identity matrix of an appropriate dimen-
sion. Diag{A1, · · · , An} represents a block-diagonal
matrix with matrices Ai, i = 1, · · · , n on its diago-
nal. The symbol ∗ will be used to denote a symmetric
structure in a matrix, that is,[

L N
∗ R

]
=

[
L N
NT R

]
.

1n is a vector with all entries equal to 1. ρ(·), det(·)
represent the spectral radius, determinant of a matrix,
respectively. E(·) denotes the mathematical expecta-
tion. Pr{·} denotes the occurrence probability of an
event. ∥x∥, ∥A∥ denote the Euclidean norm of vector
x and A, respectively. A ⊗ B denotes the Kronecker
product. A ∼ B denotes that the matrix A is simi-
lar to the matrix B. Matrices, if their dimensions are
not explicitly stated, are assumed to be compatible for
algebraic operations.

2 Problem Formulations and Prelim-
inaries

In this section, we first introduce some graph
knowledge and the networked multi-agent systems
model, then we formulate our problems and propose
some lemmas as the preliminaries of our paper.

2.1 Graph Theory

Let G = (V ,E ,A ) denote a directed weighted
graph, where V = {1, · · · , N} is the node set, E ⊂
V × V denotes the edge set, and A = [aijωij ] is
the weighted adjacency matrix with ωij > 0. Here,
ωij > 0 is said to be the weight between the agent
i and the agent j, which reflects the dependence of
the agent i on the agent j. A directed edge of G is
denoted by eij = (j, i), where j is called the parent
node of i and i is the child node of j. If the edge
eij = (j, i) ∈ E , then aij = 1, otherwise aij = 0 .
Suppose that each node has no self edge, i.e. , aii = 0
for all i. The set of neighbors of node i is denoted
by Ni = {j ∈ V : (j, i) ∈ E }. The Laplacian matrix
L = [lij ] of digraph G is defined by

lij = −aijωij , if i ̸= j

lij =
N∑

k=1,k ̸=i

aikωik, ifi = j.

A path of G from node i to node j is a se-
quence of finite ordered edges in the form of
(i, k1), (k1, k2), · · · , (kl, j). A directed graph is
strongly connected if for any distinct nodes, there
exists a path between them. A directed graph has
or contains a directed spanning tree if there exists
a node called root such that there exists a directed
path from this node to every other node. A subgraph
G1 = (V1,E1,A1) of G is a graph such that V1 ⊂ V
and E1 ⊂ E .

2.2 System Model

Consider N agents with general linear dynamics
as follows:{

ẋi(t) = Axi(t) +Bui(t), t ∈ R+,
yi(t) = Cxi(t), i ∈ {1, · · · , N}, (1)

where xi(t) ∈ Rp is the state, ui(t) ∈ Rq is the con-
trol input, and yi(t) ∈ Rm is the measured output.

The model of the networked multi-agent systems
used in this paper is shown in Fig.1 below.

WSEAS TRANSACTIONS on MATHEMATICS Fang Yan, Dongmei Xie

E-ISSN: 2224-2880 232 Issue 3, Volume 12, March 2013



��
AA

AA
��

�� ��agent j

6
sensor j

6 ?
buffer j
?

observer j
?
K
?

�

�� ��agent N

6
sensor N

6 ?
buffer N
?

observer N
?
K
?

�

�� ��agent 1

?
sensor 1

? 6
buffer 1
6

observer 16
K6

�

�� ��agent i

?
sensor i

? 6
buffer i6

observer i6
K6

�

pp p

pp p
communication network

Fig. 1 The structure of observer-based multi-agent
systems

2.3 Problem Formulations
2.3.1 Fixed Topology Case
Throughout the paper, we need the following assump-
tions:

Assumption 1. (A,B) is controllable and observable.
Matrix A described in (1) is not Hurwitz stable, i.e.,
the open-loop system is not stable.

Assumption 2. For simplicity, but without loss of
generality, all the time delays exist in the communica-
tion channels between the sensors and the observers.

Assumption 3. Every agent is regarded as a plant.
The plant output node (sensor) is assumed to be time-
driven, and its sampling period is h, whereas the ob-
server is event-driven.

Assumption 4. Here, we apply a queuing mecha-
nism, set a buffer in the receiver of every agent. Let
τkij , 0 < τkij < h, i = 1, · · · , N, j ∈ Ni be the
communication delay from agent j to agent i during
the k-th sampling period, τk = max

i=1,··· ,N,j∈Ni

{τkij} be

the maximum delay during the k-th sampling period,
τ = max

k
{τk} be the maximum delay of the multi-

agent system. Let kh + τ be the threshold time of all
the buffers during every sampling period.

Assumption 5. There exists random white noises in
the communication channels. The measured output of
agent j at the time of kh is yj(kh). The information
which agent i obtained from agent j at the time of
kh+ τ is corrupted by channel noise δij(t), and δij(t)
is assumed to satisfy

E(δij(t)) = 0, E(δTij(t)δij(t)) ≤ ∆ij

0 < τ < h, i = 1, · · · , N, j ∈ Ni, is the communica-
tion delay from agent j to agent i during the sampling
period.

For agent i, suppose the obtained information at
the time of kh+ τ is ηi(kh), specifically,

ηi(kh) =

N∑
j=1

aijωij [yj(kh)− yi(kh) + Cδij(kh)],

(2)
where aij , ωij are the adjacency relationship, the con-
nection weight from agent j and agent i, respectively.

Remark 1. The queuing mechanism works in the fol-
lowing way: during the k-th sampling period, when
there arrives a packet in the first τ time, i.e., kh ≤
t ≤ kh + τ , compare the time stamp of the packet
with current time, if the arrived packet is new, put it in
the queue; otherwise discard it. At the time kh+τ , the
queue unloads the packets inside to update the agent’s
control input. In this way, all agents update control in-
puts synchronously, and the outputs used for updating
control inputs are all delayed by equal time τ .

We design an observer-based agreement protocol
as follows:

˙̂xi(t) = Ax̂i(t) +Bui(t) +Gηi(kh)

−GC
N∑
j=1

aijωij [x̂j(kh)− x̂i(kh) + δ̂ij(kh)],

ui(t) = K
N∑
j=1

aijωij [x̂j(kh)− x̂i(kh) + δ̂ij(kh)]

(3)
where t ∈ [kh + τ, (k + 1)h + τ), x̂i(t) ∈ Rp is the

protocol state, i ∈ {1, 2, · · · , N}, G and K are the
feedback gain matrices to be designed, aij and ωij are
defined as above.

Remark 2. δ̂ij(kh) is the noise of the observers, in
general, δ̂ij(kh) ̸= δij(kh).

Then, by (2), (3), for ∀t ∈ [kh+ τ, (k+1)h+ τ),
system (1) can be written as:

˙̄xi(t) = Āx̄i(t) + B̄
N∑
j=1

aijωij [x̄j(kh)− x̄i(kh)]

+B̄

N∑
j=1

aijωij δ̄ij(kh) (4)

where

x̄i(t) = [x̂Ti (t), x
T
i (t)]

T , δ̄ij(kh) = [δ̂Tij(kh), δ
T
ij(kh)]

and

Ā =

[
A 0
0 A

]
, B̄ =

[
BK −GC GC

BK 0

]
.

In this paper, we aim to design an observer-based
control protocol to guarantee that system (1) can reach
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robust mean-square consensus. Specifically, we focus
on investigating the interdependency between the con-
vergence properties of the observer-based agreement
protocol and the structural attributes of the underlying
network topology. Here, the concept of robust mean-
square consensus is given as follows:

Definition 3. Multi-agent system (1) with strategy (2),
(3) reaches robust mean-square consensus if there
exist gain matrices K,G, connection weights ωij

and monotonously increasing function c(·) satisfying
lim
∆→0

c(∆) = 0 , such that the states of system (4) sat-

isfy
lim

t→+∞
E(∥x̄i(t)− x̄j(t)∥2) ≤ c(△)

for arbitrary i, j ∈ {1, 2, · · · , N} .

Let zi(t) = x̄i(t)− x̄1(t), i = 2, · · · , N . Define

z(t) = [zT2 (t), · · · , zTN (t)]T ,

δ̃(kh) = [δ̄T2 (kh)− δ̄T1 (kh), · · · , δ̄TN (kh)− δ̄T1 (kh)]
T .

Then for ∀t ∈ [kh+ τ, (k+1)h+ τ), we can equiva-
lently obtain a reduced system:

ż(t) = Fz(t) +Hz(kh) +Mδ̃(kh), (5)

where F = IN−1⊗Ā, H = −L̃⊗B̄, M = IN−1⊗B̄,

L̃ =

 l22 − l12 · · · l2N − l1N
...

. . .
...

lN2 − l12 · · · lNN − l1N

 is de-

fined as the reduced Laplacian matrix, where lij is
the corresponding element in the Laplacian matrix L,
Ā, B̄ are defined as above.

2.3.2 Bernoulli Switching Topology Case
Throughout the paper, we need the following assump-
tions. Assumptions 1-5 are the same as the fixed
topology case.

Assumption 6. Let aij(kh + τ) denote the connec-
tion relationship from agent j to i at kh + τ , which
can be discussed in two cases : (i) if the measured
output information yj(kh) can be achieved by agent i
at kh + τ , then aij(kh + τ) = 1, (ii) if the measured
output information yj(kh) can’t be achieved by agent
i at kh+ τ , then aij(kh+ τ) = 0.

Assumption 7. Let rij = Pr{aij(kh + τ) = 0} be a
constant satisfying 0 < rij < 1, i, j ∈ {1, 2, · · · , N}.
Obviously, the connection relationship from agent j
to i at kh + τ is subject to a Bernoulli distribution.

Suppose all the communication channels are indepen-
dent of each other, thus all the probabilities are mu-
tually independent and the multi-agent system can be
described by the Bernoulli network.

Assumption 8. For simplicity, but without loss of
generality, suppose there are M possible stochastic
switching graphs in the topology set {G1, · · · ,GM},
the occurrence probability of each graph Gl is πl, and

satisfying 0 < πl < 1 and
M∑
l=1

πl = 1. Denote the

varying topology process as {σ(kh + τ), k ≥ 0},
σ(·) : R+ → {1, 2, · · · ,M} is a piecewise-constant
stochastic switching signal.

For agent i, suppose the obtained information at
the time of kh+ τ is ηi(kh+ τ), then

ηi(kh+ τ) =
N∑
j=1

aij(kh+ τ)ωij

×[yj(kh)− yi(kh) + δij(kh)]. (6)

Similar to the fixed topology case, for ∀t ∈ [kh +
τ, (k + 1)h + τ), we can get an observer-based con-
sensus protocol as follows:

˙̂xi(t) = Ax̂i(t) +Bui(t) +Gηi(kh+ τ)

−GC
N∑
j=1

aij(kh+ τ)ωij

× [x̂j(kh)− x̂i(kh) + δ̂ij(kh)],

ui(t) = K
N∑
j=1

aij(kh+ τ)ωij [x̂j(kh)− x̂i(kh)]

+K
N∑
j=1

aij(kh+ τ)ωij δ̂ij(kh)

(7)
where x̂i(t), ui(t), aij , ωij , G,K, are defined as
above.

Then, for ∀t ∈ [kh+ τ, (k+1)h+ τ), system (1)
can be rewritten as :

˙̄xi(t)

= Āx̄i(t) + B̄

N∑
j=1

aij(kh+ τ)ωij(x̄j(kh)− x̄i(kh))

+B̄
N∑
j=1

aij(kh+ τ)ωij δ̄ij(kh), (8)

where Ā, B̄, aij , ωij , x̄i(t), δ̄ij(kh), are defined as
above. Similarly, the concept of robust mean-square
consensus is given as follows:

Definition 4. Multi-agent system (1) with strategy (6),
(7) reaches robust mean-square consensus if there
exist gain matrices K,G, connection weights ωij

and monotonously increasing function c(·) satisfying
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lim
∆→0

c(∆) = 0 , such that the states of system (4) sat-

isfy
lim

t→+∞
E(∥x̄i(t)− x̄j(t)∥2) ≤ c(△)

for arbitrary i, j ∈ {1, 2, · · · , N}.

Let zi(t) = x̄i(t)− x̄1(t), i = 2, · · · , N . Define

z(t) = [zT2 (t), · · · , zTN (t)]T ,

δ̃(kh) = [δ̄T2 (kh)− δ̄T1 (kh), ..., δ̄
T
N (kh)− δ̄T1 (kh)],

then for ∀t ∈ [kh+ τ, (k + 1)h+ τ), we can equiva-
lently obtain a reduced system:

ż(t) = Fσz(t) +Hσz(kh) +Mσ δ̃(kh), (9)

where Fσ = IN−1 ⊗ Ā, Hσ = −L̃σ ⊗ B̄,

L̃σ =

 lσ22 − lσ12 · · · lσ2N − lσ1N
...

. . .
...

lσN2 − lσ12 · · · lσNN − lσ1N

 is de-

fined as the reduced Laplacian matrix, where lσij is the
corresponding element in the Laplacian matrix Lσ.

Remark 5. Obviously, lim
t→+∞

E(∥x̄i(t) − x̄j(t)∥) ≤
c(∆) is equivalent to lim

t→+∞
E(∥zi(t)∥) ≤ c(∆),

∀i, j ∈ {2, · · · , N}, i.e., the robust mean-square
consensus problem of system (1) can be transformed
into the stability problem of a reduced system (5)
(fixed topology) or (9) (Bernoulli switching topology).
Hence, in the following discussions, we will focus
on seeking the necessary and sufficient conditions to
guarantee the stability of system (5) or (9).

Next we will analyze the robust mean-square con-
sensus of general linear systems under both fixed
topology and Bernoulli switching topology. First, we
propose some lemmas, which will play an important
role in the proof of our main theorems in Section 3.

2.4 Lemmas
Lemma 6. [22] For identical matrix I and arbitrary
matrices A,B,C,D,

eI⊗A = I⊗eA, (A⊗B)(C⊗D) = (AC)⊗(BD).

Lemma 7. [21] Suppose Gk ∈ Rn×n,
Ak, Bk, Ck, Dk ∈ Rm×m, then there exists a
common inverse matrix P such that fork = 1, 2, · · · ,

Gk ⊗
[

Ak Bk

Ck Dk

]
= P−1

[
Gk ⊗Ak Gk ⊗Bk

Gk ⊗ Ck Gk ⊗Dk

]
P,

Lemma 8. [8] L̃ has no zero eigenvalue, if and only if
the Laplacian matrix L has only one zero eigenvalue,
if and only if the graph G has a directed spanning
tree.

L̃ =

 l22 − l12 · · · l2N − l1N
...

. . .
...

lN2 − l12 · · · lNN − l1N

 is defined as

the reduced Laplacian matrix, where lij is the corre-
sponding element in the Laplacian matrix L.

Lemma 9. [20] For stochastic square matrices
E(Φσ), E(Φσ⊗Φσ), where σ is a piecewise-constant
stochastic switching signal, ρ(E(Φσ)) ≤ ρ(E(Φσ ⊗
Φσ)).

Lemma 10. [21] For stochastic matrices Φσ, Φ̃σ, if
there exists a common inverse matrix P such that
Φσ = P−1Φ̃σP , then E(Φσ ⊗ Φσ) ∼ E(Φ̃σ ⊗ Φ̃σ).

3 Robust Consensus Analysis

In this section, we aim to establish the neces-
sary and sufficient conditions to guarantee that system
(1) reaches robust mean-square consensus under both
fixed topology and Bernoulli switching topology.

3.1 Fixed Topology Case

First, the decartelization models of system (5) are
given as follows:

z((k + 1)h)

= (eFh +

∫ h−τ

0
eFsdsH)z(kh)

+

∫ h

h−τ
eFsdsHz((k−1)h)+

∫ h−τ

0
eFsdsMδ̃(kh)

+

∫ h

h−τ
eFsdsMδ̃((k − 1)h). (10)

By Lemma 6,

z((k + 1)h)

= (IN−1 ⊗ eĀh − Γ)z(kh)− L̃⊗Θz((k − 1)h)

+IN−1 ⊗
∫ h−τ

0
eĀsdsB̄δ̃(kh)

+IN−1 ⊗Θδ̃((k − 1)h), (11)

where

Γ = L̃⊗
∫ h−τ

0
eĀsdsB̄, Θ =

∫ h

h−τ
eĀsdsB̄.
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Define z̄(k) = [zT (kh), zT ((k + 1)h)]T , δ̌(k) =

[δ̃T (kh), δ̃T ((k + 1)h)], from (10) and (11), we get

z̄(k) = Φ(τ)z̄(k − 1) +Dδ̌(k − 1), (12)

where

Φ(τ) =

[
0 I2p×(N−1)

−L̃⊗Θ IN−1 ⊗ eĀh − Γ

]
and

D(τ) =

[
0 0

IN−1 ⊗Θ IN−1 ⊗ eĀh − Γ

]
.

Theorem 11. For a fixed topology, system (1) under
(2), (3) reaches robust mean-square consensus, if and
only if ρ(Φ(τ)⊗ Φ(τ)) < 1.

Proof: Defining ζ(k) = E[z̄(k) ⊗ z̄(k)], by system
(12) , we get that

ζ(k + 1) = (Φ(τ)⊗ Φ(τ))ζ(k)
+(D ⊗D)E[δ̌(k)⊗ δ̌(k)]. (13)

Necessity Now we prove the necessity by con-
tradiction. Suppose ρ(Φ(τ) ⊗ Φ(τ)) ≥ 1, then
system (13) can’t be robust asymptotically stable, i.e.,
system (12) can’t be robust mean-square stable. By
E(∥z̄(k)∥2) ≤ ∥ζ(k)∥1 ≤ 4(α − 1)E(∥z̄(k)∥2), we
get that (5) can’t be robust mean-square stable. Thus
system (1) can’t be robust mean-square consensus.

Sufficiency If ρ(Φ(τ) ⊗ Φ(τ)) < 1, there exists one
matrix norm ∥·∥α , satisfying ∥Φ(τ)⊗Φ(τ)∥α = λ <
1. By system (13), it is easy to get

∥ζ(k + 1)∥α ≤ |Φ(τ)⊗ Φ(τ))∥α∥ζ(k)∥α
+∥(D ⊗D)∥α∥E(δ̌(k)⊗ δ̌(k))∥α,

≤ λk+1∥ζ(0)∥α +

k∑
i=1

λi∆, (14)

where

∆ = 2(n− 1)2∥D ⊗D∥α(ρ(α))1/2∆.

Since λ < 1 , then lim
k→+∞

∥ζ(k)∥2 ≤ ∆/(1 − λ).

Hence, there exists positive constant M , such that

lim
k→+∞

E(∥z̄(k)∥2) ≤ M∆,

which means

lim
k→+∞

E(∥x̄i(kh)− x̄j(kh)∥2) ≤ M∆

lim
k→+∞

E(∥x̄i((k + 1)h)− x̄j((k + 1)h)∥2) ≤ M∆.

Moveover, ∀i ̸= j, by system (3) , we can get

x̄i(t) = eĀ(t−kh)x̄i(kh) +

∫ t−kh

0

eĀsds

×B̄
N∑
j=1

aijωij(x̄j(kh)− x̄i(kh) + δ̄ij(kh)).

So

E(∥x̄i(t)− x̄j(t)∥2)

≤ e2∥A∥(t−kh)E(∥x̄i(kh)− x̄1(kh)∥2)
+4N∥Ā∥−2∥B̄∥2e2∥Ā∥(t−kh)

×[
N∑
j=1

aijωijE(∥x̄j(kh)− x̄i(kh) + δ̄ij(kh)∥2)

+
N∑
j=1

a1jω1jE(∥x̄j(kh)− x̄1(kh) + δ̄1j(kh)∥2)].

Hence, there exists a positive constant M , such that

lim
k→+∞

E(∥x̄i(t)− x̄j(t)∥2) ≤ M∆,∀t ∈ [kh, (k + 1)h).

Thus, by Definition 3, multi-agent system (1) reaches
robust mean-square consensus.

Based on Theorem 11, now we focus on seeking
the necessary and sufficient conditions to guarantee
that ρ(Φ(τ)⊗ Φ(τ)) < 1.

Since

Φ(τ) =

[
0 0

−L̃⊗
∫ h
h−τ e

ĀsdsB̄ −L̃⊗
∫ h−τ
0 eĀsdsB̄

]

+

[
0 I2p×(N−1)

0 IN−1 ⊗ eĀh

]
= P−1∆(τ)P, (15)

where

∆(τ) = IN−1 ⊗
[
0 I2p
0 eĀh

]
− L̃

⊗

[
0 0∫ h

h−τ e
ĀsdsB̄

∫ h−τ
0 eĀsdsB̄

]
.(16)

Then, by Lemma 10

ρ(Φ(τ)⊗ Φ(τ)) < 1 ⇐⇒ ρ(∆(τ)⊗∆(τ)) < 1.

Based on the above discussions, we get the following
proposition.

Proposition 12. If the multi-agent system (1) can
reaches robust mean-square consensus, then the
graph G contains a directed spanning tree.
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Proof: We prove the proposition by contradiction. Let
L̃ = T−1JT , where J is the Jordan canonical form
of L̃ with diagonal elements λ1, λ2, · · · , λN−1. We
obtain

∆(τ) = (T−1 ⊗ I4p)Ω(τ)(T ⊗ I4p),

where

Ω(τ) = IN−1 ⊗
[
0 I2p
0 eĀ(h)

]

−J ⊗

 0 0∫ h

h−τ
eĀsdsB̄

∫ h−τ

0
eĀsdsB̄

 .

Suppose that there is no directed spanning tree
in the graph, by Lemma 8, L̃ has at least one zero
eigenvalue under arbitrary connection weights. With-
out loss of generality, suppose λ1 = 0. Let

Γ0 =

[
0 I2p
0 eĀh

]
,

Γ1 = Γ0 −

 0 0
h∫

h−τ

eĀsdsB̄
h−τ∫
0

eĀsdsB̄

 ,

then

Γ0 ⊗ Γ0 =


0 0 0 I2p ⊗ I2p
0 0 0 I2p ⊗ eĀh

0 0 0 eĀh ⊗ I2p
0 0 0 eĀh ⊗ eĀh

 .

Moreover, it is easy to prove

det[sI4p×4p − E(Γ0 ⊗ Γ0)]

= det(sI4p×4p − Γ0 ⊗ Γ0),

=

∣∣∣∣∣∣∣∣∣
sI4p2 0 0 −I2p ⊗ I2p
0 sI4p2 0 −I2p ⊗ eĀh

0 0 sI4p2 −eĀh ⊗ I2p
0 0 0 sI4p2 − eĀh ⊗ eĀh

∣∣∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣∣
Υ 0 0 0
0 Υ 0 0
0 0 Υ 0
0 0 0 Υ

∣∣∣∣∣∣∣∣× |sI4p2 |3, (17)

where Ā is defined above, Υ = sIp2 −eAh⊗eAh. Let
A = P−1

A JAPA, where JA is the Jordan canonical
form of A with diagonal elements µ1, · · · , µp. We
conclude

det(sIp − eAh) =

p∏
i=1

(s− eµih).

Because A is not Hurwitz stable, thus there ex-
ists at least one eigenvalue µi satisfying Re(µi) ≥
0, i ∈ {1, · · · , p}. As a result, | eµih |≥ 1 and
ρ(eAh) ≥ 1. By Lemma 9, ρ(eAh ⊗ eAh) ≥ 1. Then
ρ(E(Γ0 ⊗ Γ0)) ≥ 1, ρ(E(∆τ ⊗ ∆τ )) ≥ 1. Thus,
ρ(Φ(τ) ⊗ Φ(τ)) ≥ 1. Furthermore, by Theorem 11,
the multi-agent system (1) can’t reach robust mean-
square consensus. Therefore, the graph G contains a
directed spanning tree.

Theorem 13. suppose there exist gain matrices K,G
such that system

ξ̇i(t) = Āξi(t)− λiB̄ξi(kh), (18)

is robust mean-square stable, where t ∈ [kh+ τ, (k+
1)h+ τ), λi, i ∈ {1, · · · , N − 1} is the eigenvalue of
L̃. Then, there exist connection weights ωij such that
system (1) reaches robust mean-square consensus if
and only if the graph G contains a directed spanning
tree.

Proof: Necessity follows from Proposition 12.
(Sufficiency) If the graph G contains a directed

spanning tree, we can introduce a method to choose
the connection weights such that all the eigenvalues of
L̃ are equal and not zero. Suppose G0 = (V ,E0,A0)
is a subgraph which is composed of a directed span-
ning tree. Obviously, E0 ∈ E . First, we renumber the
agents in the following way: the number of the agent
which corresponds to the root in the G0 is 1, whereas
for the nodes corresponding to the remaining agents,
the number of the child node is larger than the number
of its parent node.
Then let

ωij =


1, if ωij ∈ E0;
0, if ωij ∈ E \ E0;
arbitrary, other case.

For the given connection weights above,

L̃ =


1 0 · · · 0
∗ 1 · · · 0
...

...
. . .

...
∗ ∗ · · · 1

.

Obviously, λ1 = λ2 = · · · = λN−1 = 1.

∆(τ) =


∆1 · · · 0 · · · 0

...
. . .

...
. . .

...
∗ · · · ∆i · · · 0
...

. . .
...

. . .
...

∗ · · · ∗ · · · ∆N−1

 ,
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where

∆i =

[
0 I2p
0 eĀh

]
−

 0 o
h∫

h−τ

eĀsdsB̄
h−τ∫
0

eĀsdsB̄

 .

Furthermore, by Lemma 7, we can get

∆(τ)⊗∆(τ)

=

 ∆1 · · · 0
...

. . .
...

∗ · · · ∆N−1

⊗

 ∆1 · · · 0
...

. . .
...

∗ · · · ∆N−1

 ,

=

 ∆1 ⊗∆(τ) · · · 0
...

. . .
...

∗ · · · ∆N−1 ⊗∆(τ)

 ,

=

 Q−1Θ1Q · · · 0
...

. . .
...

∗ · · · Q−1ΘN−1Q

 ,

= Diag{Q−1, · · · , Q−1}ΨDiag{Q, · · · , Q}, (19)

where

Θi =

 ∆i ⊗∆1 · · · 0
...

. . .
...

∗ · · · ∆i ⊗∆N−1

 ,

Ψ =



∆1 ⊗∆1 · · · 0 · · ·
...

. . .
...

. . .
∗ · · · ∆1 ⊗∆N−1 · · ·
...

. . .
...

. . .
∗ · · · ∗ · · ·
...

. . .
...

. . .
∗ · · · ∗ · · ·

0 · · · 0
...

. . .
...

0 · · · 0
...

. . .
...

∆N−1 ⊗∆1 · · · 0
...

. . .
...

∗ · · · ∆N−1 ⊗∆N−1


,

Q =



I O · · · O O O · · ·
O O · · · O I O · · ·
...

...
...

...
...

...
...

O O · · · O O O · · ·
O I · · · O O O · · ·
O O · · · O O I · · ·
...

...
...

...
...

...
...

O O · · · O O O · · ·
...

...
...

...
...

...
...

O O · · · I O O · · ·
O O · · · O O O · · ·
...

...
...

...
...

...
...

O O · · · O O O · · ·
O · · · O O · · · O
O · · · O O · · · O
...

...
...

...
...

...
O · · · I O · · · O
O · · · O O · · · O
O · · · O O · · · O
...

...
...

...
...

...
O · · · O I · · · O
...

...
...

...
...

...
O · · · O O · · · O
I · · · O O · · · O
...

...
...

...
...

...
O · · · O O · · · I



,

Θi,Ψ, Q ∈ R16(N−1)p2×16(N−1)p2 , I, O ∈ R4p×4p.
Obviously, if i ̸= j, λi and λj are mutually indepen-
dent and E(∆i) = E(∆j).

By Lemma 10, E(∆(τ) ⊗ ∆(τ)) ∼ E(Ψ). Hence,
by choosing the appropriate connection weights, we
get E(Φ(τ)⊗ Φ(τ)) ∼ E(Ψ). Obviously

ρ(Φ(τ)⊗ Φ(τ)) < 1,

⇔ ρ(E(∆i ⊗∆j) < 1, i, j ∈ {1, 2, · · · , N − 1},
⇔ ρ(E(∆i ⊗∆i) < 1, i ∈ {1, 2, · · · , N − 1},
⇔ System (18) is mean-square stable.

By the given conditions, sufficiency can be directly
proved. By Theorem11, system (1) reach robust
mean-square consensus.

Proposition 14. If there exist gain matrices G,K and
matrices Zi > 0 satisfying the following matrix in-
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equalities:  Zi ∗ ∗
0 Zi ∗

∆iZi 0 Zi

 > 0, (20)

where i ∈ {1, 2, · · · , N−1},∆i are defined as above,
then, system (18) is mean-square stable.

3.2 Bernoulli Switching Topology Case

First, the decartelization models of system (9) are
given as follows:

z((k + 1)h+ τ)

= eFσhz(kh+ τ) +

∫ h

0
eFσsdsHσz(kh)

+

∫ h

0
eFσsdsMσ δ̃(kh).

(21)

z((k + 1)h)

= eFσ(h−τ)z(kh+ τ) +

∫ h−τ

0
eFσsdsHσz(kh)

+

∫ h−τ

0
eFσsdsMσ δ̃(kh).

(22)

By Lemma 6

z((k + 1)h+ τ)

= IN−1 ⊗ eĀhz(kh+ τ)

−L̃σ ⊗
∫ h

0
eĀsdsB̄z(kh)

+IN−1 ⊗
∫ h

0
eĀsdsB̄δ̃(kh).

(23)

z((k + 1)h)

= IN−1 ⊗ eĀ(h−τ)z(kh+ τ)

−L̃σ ⊗
∫ h−τ

0
eĀsdsB̄z(kh)

+IN−1 ⊗
∫ h−τ

0
eĀsdsB̄δ̃(kh). (24)

Defining z̄(k) = [zT (kh+ τ), zT (kh)]T , by (23)
and (24), we get

z̄(k) = Φσ(τ)z̄(k) +Dσ δ̃(kh), (25)

where

Φσ(τ) =

 IN−1 ⊗ eĀh −L̃σ ⊗
∫ h

0
eĀsdsB̄

IN−1 ⊗ eĀ(h−τ) −L̃σ ⊗
∫ h−τ

0
eĀsdsB̄

 ,

Dσ =

[
IN−1 ⊗

∫ h
0 eĀsdsB̄

IN−1 ⊗
∫ h−τ
0 eĀsdsB̄

]
.

Theorem 15. For a Bernoulli switching network, sys-
tem (1) reaches robust mean-square consensus, if and
only if ρ(Ξ) < 1 , where Ξ = E(Φσ ⊗ Φσ).

Proof: Similar to the proof of Theorem 11, it is easy
to establish this theorem.

Based on Theorem 15 , now we focus on seeking
the necessary and sufficient conditions to guarantee
that ρ(Ξ) < 1 . From [21], we can get the following
results.

Corollary 16. Suppose there exist gain matrices K,G
such that system

ξ̇i(t) = Āξi(t)− λi,σB̄ξi(kh), (26)

is robust mean-square stable, where t ∈ [kh+ τ, (k+
1)h + τ), i ∈ {1, · · · , N − 1}, λi,σ ∈ {0, 1},
Pr{λi,σ = 0} = ri, P r{λi,σ = 1} = 1 − ri. Then,
there exist connection weights ωij such that system (1)
reaches robust mean-square consensus if and only if
the union of graphs in the switching topology set con-
tains a directed spanning tree.

Corollary 17. If there exist gain matrices G,K and
matrices Zi > 0 satisfying the following matrix in-
equalities Zi ∗ ∗√

riΓ0Zi Zi ∗√
1− riΓ1Zi 0 Zi

 > 0, (27)

where i ∈ {1, 2, · · · , N −1}, ri,Γ0,Γ1 are defined as
above, then system (26) is mean-square stable.

4 Simulations

In this section, numerical simulations will be
given to illustrate the theoretical results obtained in
this paper. In consideration of the result of fixed topol-
ogy case is a special case of Bernoulli switching topol-
ogy case with ri = 0, then we only give simulation of
Bernoulli switching topology case below.
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Example. Consider a multi-agent system with 4
agents, satisfying

ẋi(t) =

[
0 1
0 −0.2

]
xi(t) +

[
0
0.1

]
ui(t),

yi(t) =
[
1 0

]
xi(t), i = 1, 2, 3, 4.

Suppose there are eight possible stochastic
switching graphs in the topology set, the union of
graphs is given by Fig. 2 below. It has a directed
spanning tree.

m1 - m2 - m3 - m4
Fig. 2 The union of graphs

Select the connection weights as follows: ω21 =
ω32 = ω43 = 1, others are 0. Suppose the connec-
tion loss probability of each communication channel
is 0.5 and the eight graphs in the switching topol-
ogy set with equal occurrence probability 0.125. Let
G = [−0.2456; 0.167],K = [0.1186 − 0.1826]. The
initial values are given as

x̄1(0) = [2,−5, 8,−1], x̄2(0) = [9,−4, 13,−6],
x̄3(0) = [7,−2, 9,−3], x̄4(0) = [8,−4, 16,−7].

The noises are chosen as

δ̄1(0) = [1,−1, 0.8,−0.8],
δ̄2(0) = [0.7,−0.7, 0.6,−0.6],
δ̄3(0) = [0.4,−0.4, 0.3,−0.3],
δ̄4(0) = [0.2,−0.2, 0.1,−0.1].

When h = 0.05, τ = 0, Fig. 3 and Fig. 4 show
the simulation results.

When h = 0.05, τ = 0.01, Fig. 5 and Fig. 6
show the simulation results.

When h = 0.05, τ = 0.1, Fig. 7 and Fig. 8 show
the simulation results.

Remark 18. From Fig. 7 and Fig. 8, it is easy to find
that even thought τ > h, the multi-agent system can
reach robust mean-square consensus.

5 Conclusions

In this paper, the robust mean-square consensus
problem of data-sampled networked multi-agent sys-
tems with time-varying communication delays and
random white noises has been investigated, respec-
tively. A queuing mechanism is introduced and thus
a team of agents can be modeled as a system with
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Fig. 3 Simulation result of the states
xi, x̂i, i = 1, 2, 3, 4 with noise.
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Fig. 4 Simulation result of the observer-error
e21, e31, e41 with noise.

constant delay. Some necessary and sufficient con-
ditions for the robust mean-square consensus prob-
lem have been obtained. To conclude this paper, the
authors would like to note that how to select gain
matrix and connection weight is important. Our fu-
ture work will focus on the robust consensus problem
of discrete-time networked multi-agent systems with
Markovian packet losses, time-varying communica-
tion delays and random white noises under both the
fixed topology and the stochastic switching topology.

Acknowledgements: The research was supported
by Natural Science Foundation of Tianjin (grant No.
11JCYBJC06400).

WSEAS TRANSACTIONS on MATHEMATICS Fang Yan, Dongmei Xie

E-ISSN: 2224-2880 240 Issue 3, Volume 12, March 2013



0 2000 4000 6000 8000 10000 12000 14000
−60

−50

−40

−30

−20

−10

0

10

20

Time

T
he

 s
ta

te
 tr

aj
ec

to
rie

s

 

 
hat(x)11
hat(x)12
x11
x12
hat(x)21
hat(x)22
x21
x22
hat(x)31
hat(x)32
x31
x32
hat(x)41
hat(x)42
x41
x42

Fig. 5 Simulation result of the states
xi, x̂i, i = 1, 2, 3, 4 with small delay and noise.
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e21, e31, e41 with small delay and noise.
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